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Background & Objective:  In recent years, the use of nanoparticles (NPs), 
especially gold nanoparticles (GNPs) in radiotherapy, has been repeatedly studied 
by in-vitro, in-vivo experiments, and Monte Carlo simulation. Some studies declare 
that specific absorption of GNPs (with a higher atomic number) by cancerous cells 
increases radiations’ lethal effect compared to normal cells. This review article 
aimed to investigate the radiosensitizing effect of GNPs in cancer radiotherapy. 

 Materials & Methods:  Research databases such as Web of Science, PubMed, and 
Scopus were examined from December 2019. All Gold Nanoparticles Radiation 
Therapy (GNRT) articles that studied the radiosensitization of gold nanoparticles in 
radiotherapy were involved in the assessment. Among 706 chosen articles, 52 
documents were included in this investigation. 

Results:  The results of all these studies indicate that an increase in tumor mortality 
happens due to higher radiation absorption by nanoparticles entering the tumor; 
however, the relationship between the interaction of radiant energy and the size of gold 
nanoparticles is controversial. 

Conclusion:  This review article will discuss recent advances in the development of 
gold-based NPs to improve radiotherapy. 
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Introduction
Nanoparticles are particles with a dimension of 1 to 

100 nm (1, 2). Medications that can better penetrate the 
cells have been proposed for diagnosis and targeted 
treatment of cancer by nanomedicine. The distribution 
of nanoparticles is affected by various parameters, 
including their size and ability to inactivate cancer cells 
(3, 4). In radiation therapy, ionizing radiation such as 
high-energy photons and particles are widely used to 
treat cancerous tumors in solid form. Unfortunately, 
ionizing radiation cannot distinguish cancer cells from 
healthy cells (5, 6); therefore, normal tissues are 
damaged by radiation therapy used to eradicate cancer 
cells. The main purpose of using nanoparticles in cancer 
treatment is to enhance the outcome of radiotherapy by 
increasing the lethality of radiation in tumors and 
reducing it for healthy cells due to the accumulation of 
nanoparticles in the tumor compared to healthy tissues 
(7, 8). Among the various nanoparticles, most preclinical 
studies have been performed on gold nanoparticles with 
distinctive specifications such as tiny size, desirable 
biological adaptability and little toxicity (9, 10). These 

characteristics establish gold nanoparticles for use in 
various medical applications such as biosensors, drug 
delivery, chemotherapy, and radiation therapy (11, 12). 

Hainfeld et al. (13) investigated the toxicity of GNP on 
breast cancer cells in mice in experimental training. The 
first group received GNP before irradiation of 250 kVp 
photon. The second group received sole radiation, and the 
last group received merely GNP. Results show that the 
one-year survival rate was 86%, 20%, and 0% in the first, 
second and third groups, respectively (13). 

In another study by Chithrani et al., the accumulation of 
GNP in cancer cells and transplanted tumors of mice were 
studied, and the treatment ratio after 25MeV of 6MeV 
electron beam was investigated. Results showed that the 
amount of GNP accumulated in cells significantly 
affected mortality due to radiation (with a value of P = 
0.02). This rate was less than 0.05 in mouse tumors 
(P<0.05). However, Chang et al. Obtained a more 
significant effect using GNP with a mean dimensional of 
13 nm compared to the former study (14, 15). 
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Recent progress in synthesizing and creating 
multifunctional nanoparticle platforms has prepared great 
opportunities and benefits for targeted gene delivery. 
Using bioinformatics methods in cancer therapy, such as 
evaluating the molecular interactions of plant-derived 
inhibitors in contrast to E6AP, p53, and c-Myc has 
improved the usage of nanoparticles in cancer treatment 
(3, 4).  

Several studies have been published regarding using 
gold nanoparticles in radiation therapy. The controversial 
results concerning GNP radiosensitization could be 
emanated from the differences in GNP shape, scale, origin 
and type of cell lines, energy and type of radiation. 
Therefore, the purpose of this review article was to 
consider the gold nanoparticles’ radiosensitization in 
cancer radiation therapy. 

 

Materials and Methods 
A current systematic review was done according to 

Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) (16). All GNRT studies that 
investigated the radiosensitization of gold nanoparticles in 
radiotherapy were included in the article. Moreover, 
review articles, editorials, and letters to the editor were 
excluded. 

Eligibility Criteria  
Original peer-reviewed articles published in the English 

language on the application of GNPs in cancer (as well as 
in-vitro, cell, cancer, radiation therapy, radiosensitization, 
and neoplasms) were evaluated. Articles that used NPs 
without any gold component were omitted. The last 
finding was assessed in the case of numerous studies 
derived from the same institution. 

Data Origin and Examination 
A wide literature search was performed up to December 

2019 using Web of Science, PubMed and Scopus 
databases. The MeSH search terms used were “gold 
nano*” and “*radiosensitization*” or “*radiation 
therapy*” or “radiotherapy” and “cancer” and 
“neoplasms” and “*invitro.”* 

Article and Data Assortment Process 
In the first step, the title and abstract of chosen articles 

were independently scanned by two authors (HK, SN). In 
the case of disagreement between authors in selecting the 
articles, the problem was resolved using the third author’s 
judgment (ADI). The next step was considering the 
chosen articles based on the eligibility criteria. Finally, 
data such as: (1) the name of the first Authors, (2) date of 

Publication, (3) Site of Study, (4) Type of Study, (5) used 
NP Size, (6) NP size in intervention group, (7) NP size in 
the control group and the (8) Effect of NP Size extracted 
from the chosen articles by two authors (HK, SN). There 
was a suitable agreement between the two authors, and 
minor disagreements were discussed between all authors 
until a full consensus was reached on the studies included 
in the study. 

Data Items 
Microsoft Excel software was used to extract and 

manage the data of the chosen studies. Other data 
extracted from the studies: Type of Study, Sample size 
(Sample size in intervention and control group), type of 
GNP, shape, average size, Effect size (Radiosensitivity, 
Dose Enhancement Factor, rate of mortality and 
percentage of remaining cells).  

 

Results  
OFT results 

Initial examines by of the mentioned MeSH terms 
discovered 706 articles. At first, the titles of the articles 
were reviewed to reach higher quality and appropriate 
articles. Duplicate articles and articles whose titles were 
not related to the dimensions of research effectiveness 
were removed. After checking the eligibility criteria, 52 
articles regarding the radiosensitization of gold 
nanoparticles in radiotherapy were included in the review 
(Figure 1).  

GNPs used as cancer radiation sensitizers often 
included a combination of conjugated GNPs with silica, 
PEG, chitosan and iron core. Although different shapes of 
NPs have been used, rods and sphere shapes were more 
common. The identifiable characteristics of GNPs used in 
articles are presented in Tables 1, 2, and 3. 

Table 1 represents the rate of increase in radiation 
sensitization using gold nanoparticles in recent research. 
The mean value of rising in radiosensitivity for these 
studies was SER = 1.59 ± 0.30. 

Table 2 shows the rate of increase in the absorption dose 
factor in the studies conducted using gold nanoparticles in 
recent years. The mean value of the increase in absorption 
dose factor for these studies was DEF1 = 1.45± 0.39. 

Table 3 indicates the mortality rate and percentage of 
cells remaining due to radiation using gold nanoparticles 
in recent years. The mean mortality for these studies was 
42.67±24.78. It should be noted that this table examines 
the various parameters related to the tumor, but the 
differences in the results in some studies are very large. 

 

 

                                                           
1Dose Enhancement Factor 
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Figure 1. PRISMA Flowchart: Flowchart using syntax appropriate search and identification step to include in the Review 
 

Table 1. The rate of increase in radiosensitivity in research using gold nanoparticles 

ID Author Study Shape Average 
Size (nm) Sample Size Sample size in 

intervention group 
Sample size in 
control group Effect size 

1 Zhu, C. D. (17) E Sp 20 3000 cell/well 3000 cell/well 3000 cell/well SER =1.96 
2 Zhu, C. (18) E Sp 20 3000 cell/well 3000 cell/well 3000 cell/well SER=2 
3 Zheng Q. (19) E Sp 100 4000 cell/well 4000 cell/well 4000 cell/well SER=1.769 
4 Zhao, N. (20) E Rod 20 5000 cell/well 5000 cell/well 5000 cell/well SER=1.52 
5 Zhang, Y. (21) E Sp 32 mice mice mice SER=1.73 
6 Zhang, X. (22) E Sp 4.8-46.6 1000000 cell/well 1000000 cell/well 1000000 cell/well SER=2.07(For GNP: 46.6 nm) 
7 Zhang, X. (23) E Sp 6.3 1000000 cell/well 1000000 cell/well 1000000 cell/well SER=1.59 

8 Zabihzadeh, M. 
(24) E Sp 24 1000000 cell/well 1000000 cell/well 1000000 cell/well SER=1.25 

9 Wang, C. (25) E Sp 16 & 49 4000 cell/well 4000 cell/well 4000 cell/well SER=1.86  (For GNP: 49nm) 
SER=1.49 (FOR GNP:16nm) 

10 Sung, W. (26) S Sp 2,15,20 & 5 -- SER=1.2(For GNP: 50nm) 

11 Shi, M. (27) E Sp 4.8 cell cell cell SER=1.48   (For Dose=1 Gy) 
SER=1.69 (For Dose=4 Gy) 

12 Nicol, J. R. (28) E Sp 13 30000 cell/well 30000 cell/well 30000 cell/well SER=1.25 ( For NPs alone) 
SER=3.19 ( For NPs+RT) 

13 Mehrnia, S.  S. 
(29) E Sp 10 Cell Cell Cell SER=1.43  AND 1.40 

(FOR TWO CELL LINES) 

14 McMahon, S. J. 
(30) S Sp 2   SER = 1.29 and 1.16 

(For E=6 MeV and 15 MeV) 

15 Ma, N. N. (31) E Sp & 
Rod 20 cell cell cell 

SER= 1.62, 1.37, and 1.21 
(For different shapes of gold 

nanoparticles) 

16 Ma, N. (32) E Sp & 
Rod 50 cell cell cell SER=2.30 

17 Ab Rashid, R. 
(33) E Sp  1.9 2000 cells (HeLa ) 1000 cells per 

well 1000 cells per well SER=1.78 

18 Al Zaki, A. 
(34) E Sp 1.9 16 mice 8 mice 8 mice SER=1.7 

19 Enferadi, M. 
(35) E Sp 1.8 

10000 ALTS1C1, 
AML12, and RAW 

cells 
5000 5000 SER =1.66 

20 Jain, S. (36) E Sp 1.9 
150000  MDA-MB-

231 breast cancer 
cells 

75000 75000 SER=1.41 

E: Experimental – S: Simulation - Sp: Spherical 
  

 

 

Records identified through 
database searching 
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Records after duplicates removed  
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Full-text articles assessed for 
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Full-text articles 
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(n = 52) 
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Table 2. The dose enhancement factor in research using gold nanoparticles 

ID Author Shape Average Size 
(nm) Study Sample Size Sample size in 

intervention group 
Sample size in contro  

group Effect size 

1 
Taggart, L.E. 

(37) Spherical 1.9 nm Experimental 100000 cell/well 100000 cell/well 100000 cell/well DEF=1.52 

2 
Khosravi,H. 

(38) Spherical 15, 50, and 100 
nm Simulation - DEF=2.66 (For E=50 keV) 

DEF=1.10  (For E=6 MeV) 

3 Rezaee, Z. (39) Spherical 15 nm Experimental cell cell cell DEF=1.17-2.89 (For various 
times) 

4 
Rahman, W. N. 

(40) Spherical 1.9 nm Experimental 50000cell 50000cell 50000cell DEF=1.14-1.74 (For differen  
energies) 

5 
Rahman, W. N. 

(41) Spherical 1.9 nm Experimental 10000 cell/well 10000 cell/well 10000 cell/well DEF=4  (FOR E=6 MeV) 

6 
Mousavi, M. 

(42) Spherical  
24.7±3.6 nm Experimental Cell Cell Cell DEF=1.22 

7 Cui, L. (43) Spherical 5.81 ± 1.53 nm Experimental 2000000 MDA-MB-231 breast 
cancer cells 1000000 1000000 DEF=1.39 

8 Amato, E. (44) Spherical 50 μm Simulation - DEF=1.6- 6.5 

9 Cui, L. (45) Spherical 2.7 nm Experimental 2000000 MDA-MB-231 breast 
cancer cells 1000000 1000000 DEF = 1.39 

10 
Khosravi,H. 

(46) Spherical 15 nm Experimental/ 
Simulation MAGIC-f polymer gel gel+gnp gel DEF=1.12 

11 Her, S. (47) Spherical 15 nm Experimental 2000000 Human breast 
carcinoma cells 1000000 1000000 DEF=1.55 

12 
Smith, C. L. 

(48) Spherical 5 nm Experimental cell cell cell DEF= 10% 

13 
Roeske, J. C. 

(49) Spherical 1.9  nm Simulation Simulation - DEF=1.01 

14 
Chithrani, D. B. 

(50) Spherical 14–74 nm Experimental 2000000 HeLa cells 1000000 1000000 DEF=1.43 

15 Geng, F. (51) Spherical 14.37 ± 2.49 nm Experimental 4000 SK-OV-3 cell 2000 2000 DEF=30.48 

16 Brivio, D. (52) Spherical 20 nm Simulation - DEF=1.97 

17 
Gadoue, S. M. 

(53) Spherical 100 nm Simulation - DEF=%64 

18 
Ghorbani, M. 

(54) Spherical 50 nm Simulation - DEF=1.79 

19 Koger, B. (55) Spherical 10, 20, and 50 
nm Simulation - DEF=34% (FOR GNP:50 nm  

 

 

Table 3. Mortality rate and percentage of cells remaining due to radiation using gold nanoparticles 

ID Author Shape Average Size 
(nm) Study Sample Size Sample size in 

intervention group 
Sample size in 
control group Effect size 

1 Zhang, X. 
(56) Spherical 15 nm Experimental 3000 cell/well 300 cell/well 300 cell/well Death=45.97% 

2 Zhang, A. 
(57) Spherical 58.14 ± 4 

nm Experimental 5000 cell/well 5000 cell/well 5000 cell/well Death in Control=9.9% 
Death in Treated =10.85% 

3 Hainfeld, J. F. 
(58) Spherical 1.9 nm Experimental 2000000 EMT-6 

mouse 1000000 1000000 Some 86% long-term (>1 year) 
cures of EMT-6 mouse mammary 

4 Zhang, Z. (59) Spherical 10 nm Experimental 5000 cell/well 5000 cell/well 5000 cell/well Viability=4% 

5 Vieira, L. (60) Spherical 18±4 nm Experimental 100000 cell/well 100000 cell/well 100000 cell/well Cell Viability=62% 

6 Tentor, F. R. 
(61) Spherical 20 nm Experimental 250000 cell/well 250000 cell/well 250000 cell/well Viability in Control=94% 

Viability in Treated Group=67% 

7 Roa, W. (62) Spherical 15 nm Experimental cell cell cell Cell Survival = 36% 

8 Movahedi, M. 
M. (63) Spherical 58 nm Experimental 10000cell/well 10000cell/well 10000cell/well 

Cell Viability in Control Group 
=86% 

Cell Viability in Treated 
RT+NP=69% 

9 Zavidij,  O. 
(64) 

Not 
mentione

d 

Not 
mentioned Experimental mice mice mice SF= 30%     In Treated 

SF = 0%     In Control 

10 Miladi, I. (65) Spherical Not 
mentioned Experimental mice mice mice 

Survival in Control Group =28 
day 

Survival by RT + NPs=117 day 
(Improvement: 50%) 

11 Atkinson, R. 
L. (66) 

nanoshel
l - Experimental 10 million cells/ml 5 million cells/ml 5 million cells/ml Survival Fraction=1/3 

12 Chattopadhya
y, N. (67) Spherical 30 nm Experimental 

100000 MDA-MB-
361 human breast 

cancer cells 
500000 500000 Death=46% 

13 Liu, C. J. (68) Spherical 6.1 ± 1.9 Experimental (B16) cell lines 5000 5000 Death≌45% 
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Discussion 
This study investigated the sensitizing effect of gold 

nanoparticles in cancer radiotherapy around three main 
axes: the rate of radiation sensitivity, the rate of 
absorption dose factor, the rate of mortality, and the 
percentage of remaining cells. 

Using gold nanoparticles as a radiation sensitizer in 
irradiation of cancer cells led to an increase in 
therapeutic efficiency up to 59% at low photon 
energies by using orthovoltage sources. The results of 
using these nanoparticles showed that reducing the 
prescribed dose by about 60% could have a similar 
lethal effect in cancer cells. The cause of radiation 
sensitization of gold nanoparticles is the high atomic 
number of gold relative to the atomic number of 
biological elements present in the tissue or cells. Many 
studies confirm the irradiative sensitivity of gold 
nanoparticles. As the study conditions vary greatly 
from study to study, the sensitivities reported in such 
studies are different (17-36, 69-72). 

With the use of gold nanoparticles, the radiation 
absorption dose was increased by an average of 45%. 
In general, the difference in the rate of increase in 
absorbed dose in various studies can be attributed to 
differences in the concentration of GNPs, the type of 
coat of GNPs, and the type of investigated cell line or 
a combination of these factors. It is clear that by 
increasing the concentration of GNPs, a higher dose 
coefficient can be achieved. In using larger NPs to 
increase the dose, a compromise must be made between 
entering and accumulating more NPs inside the cells 
(37-55, 69). 

The mortality rate and percentage of cancerous cells 
remaining after radiotherapy using GNPs have been 
studied in various experimental studies over the past 
years. The average rate of mortality in these studies 
was about 42%. Results of studies, which have 
investigated the toxicity of GNPS, show that these NPs 
can reduce viability and cancerous cell growth. 
However, the toxicity of GNPs depends on the 
concentration, size and shape of NPs, the incubation 
period, and the investigated cell line type. In addition, 
comparisons were made between different beams at a 
given incubation time. Results showed that the X-ray 
peak at 180 kV could be more effective than the other 
energies, although this variation was not statistically 
significant. The theoretical fact can explain this 
increase in the absorption dose coefficient of 180 kV 
X-ray that photons with energies about 50 kV have a 
higher mass-energy absorption coefficient in gold than 
water or water equivalent (56-69).  

Also, recent studies have concluded that gold 
nanoparticles in combination with chemotherapy 
medicines such as Bleomycin (70) or 
immunomodulation (71) can enhance the treatment 
results and increase the Plasmid DNA damages due to 
MV radiations (71).  

 

Conclusion 
The results of all studies in this field confirm the 

increase in the absorbed dose of the tumor in radiation 
therapy due to the replacement of gold nanoparticles in 
the tumor. However, the results of the interaction of 
photon energy with the magnitude of GNPs are still 
controversial. Monte Carlo simulation studies have 
investigated GNPs with 10 to 100 nm dimensions, 
while biological studies have studied dimensions up to 
1.9 nm. Results of simulations show that the most 
effective parameters of NPs are larger dimensions, high 
molar concentrations, and low-energy X-ray or gamma 
photons that allow for higher dose escalation. This 
article aimed to answer some of the questions in this 
field. More and more extensive research in this regard 
is necessary to reach a global consensus and clinical 
application. 
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